Stokesian peristaltic pumping in a three-dimensional tube with a phase-shifted asymmetry
نویسندگان
چکیده
Many physiological flows are driven by waves of muscular contractions passed along a tubular structure. This peristaltic pumping plays a role in ovum transport in the oviduct and in rapid sperm transport through the uterus. As such, flow due to peristalsis has been a central theme in classical biological fluid dynamics. Analytical approaches and numerical methods have been used to study flow in two-dimensional channels and three-dimensional tubes. In two dimensions, the effect of asymmetry due to a phase shift between the channel walls has been examined. However, in three dimensions, peristalsis in a non-axisymmetric tube has received little attention. Here, we present a computational model of peristaltic pumping of a viscous fluid in three dimensions based upon the method of regularized Stokeslets. In particular, we study the flow structure and mean flow in a threedimensional tube whose asymmetry is governed by a single phase-shift parameter. We view this as a three-dimensional analog of the phase-shifted two-dimensional channel. We find that the maximum mean flow rate is achieved for the parameter that results in an axisymmetric tube. We also validate this approach by comparing our computational results with classical long-wavelength theory for the three-dimensional axisymmetric tube. This computational framework is easily implemented and may be adapted to more comprehensive physiological models where the kinematics of the tube walls are not specified a priori, but emerge due to the coupling of its passive elastic properties, force generating mechanisms, and the surrounding viscous fluid. VC 2011 American Institute of Physics. [doi:10.1063/1.3622319]
منابع مشابه
A model of Stokesian peristalsis and vesicle transport in a three-dimensional closed cavity.
The complexity of the mechanics involved in the mammalian reproductive process is evident. Neither an ovum nor an embryo is self-propelled, but move through the oviduct or uterus due to the peristaltic action of the tube walls, imposed pressure gradients, and perhaps ciliary motion. Here we use the method of regularized Stokeslets to model the transport of an ovum or an embryo within a peristal...
متن کاملAnalysis of Peristaltic Waves & their Role in Migrating Physarum Plasmodia
The true slime mold Physarum polycephalum exhibits a vast array of sophisticated manipulations of its intracellular cytoplasm. Growing microplasmodia of Physarum have been observed to adopt an elongated tadpole shape, then contract in a rhythmic, traveling wave pattern that resembles peristaltic pumping. This contraction drives a fast flow of non-gelated cytoplasm along the cell longitudinal ax...
متن کاملHeat and Mass Transfer Analysis on MHD Peristaltic Prandtl Fluid Model through a Tapered Channel with Thermal Radiation
This paper deals with a theoretical investigation of heat and mass transfer with thermal radiation analysis on hydromagnetic peristaltic Prandtl fluid model with porous medium through an asymmetric tapered vertical channel under the influence of gravity field. Analytical results are found for the velocity, pressure gradient, pressure rise, frictional force, temperature and concentration. The in...
متن کاملHeat Transfer on Peristaltic Transport with Slip Condition in an Asymmetric Porous Channel (TECHNICAL NOTE)
Simultaneous effects of slip and heat transfer on peristaltic transport of an incompressible electrically conducting viscous fluid in an asymmetric channel is studied under the assumptions of long wavelength and low Reynold number .The asymmetry is produced by choosing the peristaltic wave train on the walls to have different amplitudes and phase.Exect solutions for stream function,velocity ...
متن کاملThree-dimensional CFD modeling of fluid flow and heat transfer characteristics of Al2O3/water nanofluid in microchannel heat sink with Eulerian-Eulerian approach
In this paper, three-dimensional incompressible laminar fluid flow in a rectangular microchannel heat sink (MCHS) using Al2O3/water nanofluid as a cooling fluid is numerically studied. CFD prediction of fluid flow and forced convection heat transfer properties of nanofluid using single-phase and two-phase model (Eulerian-Eulerian approach) are compared. Hydraulic and thermal performance of microch...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011